Efficient Stereospecific Synthesis of Diamide Analogs of Phosphatidylcholine Starting from 1-(4'-Methoxyphenyl)-sn-glycerol

Hoe-Sup Byun and Robert Bittman*

Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, New York 11367-1597

Received July 25, 1996

Amide analogs of diacylglycerophosphocholines are of interest as inhibitors of phospholipase A21 and as potential anti-HIV² and antitumor agents.³ Synthetic amidelinked lipids have been used to investigate the influence of lipid structure on lipid movement in bilayer membranes.^{4,5} Low-yielding achiral syntheses of 1,2-bis-(acylamino)-1,2-dideoxy-sn-glycerophosphocholine (1) have been reported starting from 2,3-dibromopropanol,² 2,3dibromopropionic acid,^{5,6} and L-asparagine.⁶ We report here an efficient chiral synthesis of 1 starting from readily available 1-(4'-methoxyphenyl)-sn-glycerol (2):7 2'. the enantiomer of 2, afforded 2,3-diamido-1-propanol (4c'), which can be converted into the enantiomer of 1.

Results and Discussion

Introduction of Two Amide Groups into sn-Glycerol Derivative 2. In order to synthesize optically active diamide analogs of phosphocholine we chose 1-(4'methoxyphenyl)-*sn*-glycerol (2) as the starting material. The protected glycerol 2 was prepared by asymmetric dihydroxylation^{7a} of allyl 4-methoxyphenyl ether using AD-mix supplemented with potassium persulfate.^{7b} Glycerol 2 was converted to the dimesylate by using methanesulfonyl chloride in the presence of pyridine (Scheme 1). The dimesylate was subjected to a $S_N 2$ reaction in a suspension of sodium azide in DMF. The diazide was converted to the long-chain diamide by the reduction of azide groups with triphenylphosphine-water⁸ followed by in-situ acylation of the resulting diamine with an excess of 4-nitrophenyl stearate, 4-nitrophenyl palmitate, or 4-nitrophenyl caprylate in THF to give diamide 3. Recrystallization of 3 in THF-acetone provided pure diamidopropyl aryl ether 3 in 68-76% overall yield from glycerol 2.

Deprotection of the 4-Methoxyphenyl Group. After the desired diamido groups had been introduced

* To whom correspondence should be addressed. Tel.: (718) 997-3279. Fax: (718) 997-3349. E-mail: bittman@qcvaxa.acc.qc.edu.

(1) (a) Yu, L.; Deems, R. A.; Hajdu, J.; Dennis, E. A. J. Biol. Chem. (1990, 265, 2657–2664. (b) Dijkman, R.; Dekker, N.; De Haas, G. H. Biochim. Biophys. Acta **1990**, 1043, 67–74. (c) Dijkman, R.; Cox, R.; Van den Berg, L.; Verheij, H. M.; De Haas, G. H. Biochim. Biophys. Acta 1994, 1212, 50-58.

- (3) Marx, M. H.; Piantadosi, C.; Noseda, A.; Daniel, L. W.; Modest, (4) Kan, C.-C.; Bittman, R.; Hajdu, J. Biochim. Biophys. Acta 1991,
- 1066.95-101
- (5) Moss, R. A.; Li, J.-M.; Kotchevar, A. T. Langmuir 1994, 10, 3380-3382
- (6) Sunamoto, J.; Goto, M.; Iwamoto, K.; Kondo, H.; Sato, T. Biochim.

(6) Sumaniou, J., Goto, W., Wannob, K., Kohao, H., Sette, T. Disentario, Biophys. Acta 1990, 1024, 209–219.
(7) (a) For a recent review, see: Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547. (b) Byun, H.-S.; Kumar, E. R.; Bittman, R. J. Org. Chem. 1994, 59, 2630–2633.

(8) For a review about the Staudinger reaction, see: Gololobov, Y. G.; Zhmurova, I. N.; Kasukhin, L. F. *Tetrahedron* **1981**, *37*, 437–472.

Scheme 1. Synthesis of Diamide Analogs of **Phosphatidylcholine (1)**

into the glycerol backbone of 3, the 4-methoxyphenyl group was removed by using CAN.7b,9 The removal of the 4-methoxyphenyl group by CAN is usually carried out in CH₃CN-H₂O solution.^{7b,9} Due to the poor solubility of diamidopropyl aryl ether 3 in this solvent system, it was necessary to carry out the deprotection in another solvent. We found that CHCl₃–MeOH 1:1 was a suitable solvent system for this purpose in the presence of 3 equiv of CAN. The removal of the 4-methoxyphenyl group provided 2,3-diamidopropanol 4 in 73-89% yield.

Insertion of the Phosphocholine Moiety into Diamidopropanol 4. It has been reported that phosphorylation reactions of *rac*-diamidopropanol 4 by using β -bromoethyl phosphodichloridate or 2-chloro-1,3,2-dioxaphospholane followed by introduction of the quaternary N⁺Me₃ salt provide rac-1,2-bis(acylamino)-1,2-dideoxyglycerophosphocholines 1 in only about 12%⁶ and 40%² yields, respectively. Instead, we chose to phosphitylate **3** using commercially available ethylene chlorophosphite.¹⁰ Our procedure, in which the phosphocholine moiety is inserted into diamidopropanol 4 by use of trivalent phosphorus, provided a higher yield (65-70% overall yield from 4) than those obtained with pentavalent phosphorus.

© 1996 American Chemical Society

⁽²⁾ Jia, C.; Haines, A. H. J. Chem. Soc., Perkin Trans. 11993, 2521-2523

⁽⁹⁾ Vilchèze, C.; Bittman, R. J. Lipid Res. 1994, 35, 734-738. (10) Erukulla, R. K.; Byun, H.-S.; Bittman, R. Tetrahedron Lett. 1994 35 5783-5784

Experimental Section

General Methods. Melting points are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ at 400 and 100 MHz, respectively. FAB HRMS were obtained at Michigan State University. Optical rotations were measured in a cell of 1-dm pathlength. TLC was carried out with silica gel GF (250 μ m) glass plates from Analtech (Newark, DE) and silica gel 60 aluminum sheets from EM Separations (Gibbstown, NJ). The compounds were visualized by heating with phosphorus spray, iodine chamber, and/or short-wavelength UV light. For flash chromatography, silica gel 60 (230-400 ASTM mesh) was used (purchased from Aldrich). Solvents were dried as follows: CH2-Cl₂ was distilled from CaH₂; C₆H₆ was washed with concentrated H₂SO₄ and water, dried over CaCl₂, and then distilled over sodium metal; and pyridine and DMF were dried by refluxing over BaO followed by distillation just before use. 1- and 3-(4'methoxyphenyl)-sn-glycerol (2 and 2)^{7b} and 4-nitrophenyl esters¹¹ were prepared by the methods described earlier.

(R)-2,3-Dioctadecanamidopropyl 4'-Methoxyphenyl Ether (3a). To a solution of 1-(4'-methoxyphenyl)-sn-glycerol (2, 1.0 g, 5.0 mmol) and pyridine (2.0 mL, 25 mmol) in 20 mL of CH₂-Cl₂ was added methanesulfonyl chloride (0.80 mL, 10.4 mmol) at -10 °C. After being stirred for 4 h at 0 °C, the mixture was diluted with EtOAc and washed with water, 10% aqueous NaHSO₄ solution, saturated aqueous NaHCO₃ solution, and water. The solvents were removed in vacuo to give the crude dimesvlate as a white solid. The crude dimesvlate was dissolved in 30 mL of DMF, and sodium azide (3.25 g, 50.0 mmol) was added. The reaction mixture was stirred at 90 °C for 24 h. The product was extracted with EtOAc and concentrated to give a crude diazide. The colored impurity was removed by dissolving the crude diazide in 20 mL of hexane-EtOAc 10:1 and filtering the solution through a pad of silica gel, which was rinsed with 100 mL of hexane-EtOAc 10:1. The filtrate was concentrated under reduced pressure to give the diazide as a colorless oil. To the solution of the diazide in wet THF were added triphenylphosphine (2.63 g, 10 mmol) and 4-nitrophenyl stearate (3.78 g, 10 mmol) at the same time. After the reaction mixture was stirred for 24 h at rt and was refluxed for 2 h, it was diluted with acetone and cooled to -20 °C. The product was collected by filtration and purified by recrystallization in THF-acetone three times to give 2.77 g (76%) of diamidopropyl aryl ether 3a as a white solid: mp 108–110 °C; $[\alpha]^{25}_{D}$ +15.82° (c 1.4, CHCl₃); IR (KBr) 3460, 1623 cm⁻¹; ¹H NMR δ 6.88–6.80 (m, 4H), 6.71 (d, 1H, J = 6.1 Hz), 6.28 (bs, 1H), 4.30 (m, 1H), 4.09–4.06 (dd, 1H, J = 3.8, 9.6 Hz), 3.88–3.85 (dd, 1H, J = 6.4, 9.6 Hz), 3.78 (s, 3H), 3.69-3.61 (m, 1H), 3.41-3.46 (m, 1H), 2.36 (t, 4H, J =7.3 Hz), 1.63–1.77 (m, 4H), 1.25 (s, 56H), 0.88 (t, 6H, J = 5.9Hz); ¹³C NMR & 175.26, 174.42, 154.23, 152.30, 115.42, 114.73, 67.69, 55.69, 49.90, 41.62, 36.73, 36.59, 32.11, 31.94, 31.77, 30.32, 30.08, 29.73, 29.70, 29.68, 29.55, 29.39, 29.33, 29.20, 26.31, 25.80, 25.70, 22.87, 22.71, 14.15; HRMS (FAB, MH⁺) m/z calcd for C46H85N2O4 729.6509, found 729.6512.

(*R*)-2,3-Dihexadecanamidopropyl 4'-Methoxyphenyl Ether (3b). The compound was prepared in 73% yield from 1-(4'-methoxyphenyl)-*sn*-glycerol (2) and 4-nitrophenyl palmitate by the procedure described above: mp 113–115 °C; $[\alpha]^{25}_{\rm D}$ +14.78° (*c* 1.4, CHCl₃); ¹H NMR δ 6.77–6.88 (m, 4H), 6.70 (d, 1H, *J* = 6.1 Hz), 6.28 (bs, 1H), 4.30 (m, 1H), 4.09–4.06 (dd, 1H, *J* = 3.8, 9.6 Hz), 3.88–3.85 (dd, 1H, *J* = 6.4, 9.6 Hz), 3.76 (s, 3H), 3.71–3.64 (m, 1H), 1.25 (s, 48H), 0.88 (t, 6H, *J* = 6.6 Hz); ¹³C NMR δ 175.23, 174.40, 154.22, 152.29, 115.41, 114.72, 67.69, 55.69, 49.90, 41.62, 36.73, 36.59, 32.11, 31.94, 31.77, 30.32, 30.08, 29.73, 29.70, 29.68, 29.55, 29.39, 29.33, 29.29, 26.31, 25.80, 25.70, 22.87, 22.71, 14.14; HRMS (FAB, MH⁺) *m*/*z* calcd for C₄₂H₇₇N₂O₄ 673.5883, found 673.5878.

(*R*)-2,3-Dioctanamidopropyl 4'-Methoxyphenyl Ether (3c). The compound was prepared in 68% yield from 1-(4'methoxyphenyl)-*sn*-glycerol (2) and 4-nitrophenyl caprylate by the procedure described above except for the following variation. It was necessary to remove triphenylphosphine oxide after reduction of the diazide by triphenylphosphine in THF-H₂O because the R_f values of 3c and triphenylphosphine oxide coincide (elution with CHCl₃-MeOH 10:1). After the reduction, the reaction mixture was concentrated to give a residue that was dissolved in CHCl₃ and filtered through a pad of silica gel (elution with CHCl₃) to remove triphenylphosphine oxide. The 1,2-diaminopropyl 4'-methoxyphenyl ether was eluted with CHCl₃-CH₃OH-NH₄OH 65:35:8, concentrated, and then reacted with 4-nitrophenyl caprylate. The product was purified by column chromatography on silica gel (elution with CHCl3-MeOH 50:1) to give 3c as a white solid: mp 97–98 °C; $[\alpha]^{25}_{D}$ $+19.89^{\circ}$ (c 2.0, CHCl₃); ¹H NMR δ 6.89 (d, 1H, J = 6.7 Hz), 6.85-6.78 (m, 4H), 6.69 (bs, 1H), 4.30 (bs, 1H), 4.06-4.03 (dd, 1H, J = 3.8, 9.6 Hz), 3.86-3.84 (dd, 1H, J = 6.4, 9.6 Hz), 3.75 (s, 3H), 3.70-3.62 (m, 1H), 3.46-3.42 (m, 1H), 2.19 (t, 4H, J = 7.6 Hz), 1.62-1.60 (m, 4H), 1.25 (s, 16H), 0.88 (t, 6H, J = 6.6 Hz); ${}^{13}C$ NMR δ 175.11, 174.22, 154.10, 152.31, 115.38, 114.63, 67.85, 55.62, 49.88, 41.33, 36.65, 36.50, 31.64, 29.73, 29.21, 29.16, 28.97, 28.81, 25.75, 25.64, 22.55, 14.00; HRMS (FAB, MH⁺) m/z calcd for C₂₆H₄₅N₂O₄ 449.3379, found 449.3377.

(*S*)-2,3-Dioctanamidopropyl 4-Methoxyphenyl Ether (3c'). The compound was prepared in 66% yield from 3-(4'-methoxyphenyl)-*sn*-glycerol (2') by the procedure described above: mp 99–100 °C; $[\alpha]^{25}_{D}$ –20.98° (*c* 2.0, CHCl₃).

(R)-2,3-Dioctadecanamido-1-propanol (4a). To a solution of diamidopropyl ether 3a (2.19 g, 3.0 mmol) in 300 mL of CHCl₃-CH₃OH 1:1 was added CAN (5.48 g, 10.0 mmol), and the mixture was stirred overnight at rt. The reaction mixture was diluted with CHCl₃ and was washed with aqueous 10% Na₂-SO3 solution and brine. The product was purified by recrystallization in MeOH twice, followed by column chromatography on silica gel (elution with CHCl₃-MeOH 50:1), to give 1.66 g (89%) of diamidopropanol 4a¹² as a white solid (elution with CHCl₃-CH₃OH 50:1): mp 115–117 °C; IR (KBr) 3436, 3295, 1637 cm⁻¹; ¹H NMR δ 6.72 (d, 1H, J = 6.1 Hz), 6.30 (bs, 1H), 4.31 (bs, 1H), 4.11-4.18 (m, 1H), 3.42-3.76 (m, 4H), 2.18 (t, 4H, J = 7.3 Hz), 1.63–1.77 (m, 4H), 1.25 (s, 56H), 0.88 (t, 6H, J = 5.9 Hz); ¹³C NMR & 175.24, 174.39, 55.69, 49.90, 41.62, 36.73, 36.59, 32.11, 31.94, 31.77, 30.32, 30.08, 29.73, 29.70, 29.68, 29.55, 29.39, 29.33, 29.29, 26.31, 25.80, 25.70, 22.87, 22.71, 14.14; HRMS (FAB, MH⁺) m/z calcd for C₃₉H₇₉N₂O₃ 623.6090, found 623.6109.

(*R*)-2,3-Dihexadecanamido-1-propanol (4b). The compound was prepared in 83% yield from diamidopropyl ether $3b^{12}$ by the procedure described above: mp 112–114 °C (*rac*-4b lit.² mp 110–112.5 °C); ¹H NMR δ 6.89 (d, 1H, J= 6.2 Hz), 6.71 (bs, 1H), 4.31 (bs, 1H), 4.03–4.09 (m, 1H), 3.43–3.81 (m, 4H), 2.18 (t, 4H, J = 7.3 Hz), 1.63–1.77 (m, 4H), 1.25 (s, 48H), 0.88 (t, 6H, J = 5.9 Hz); ¹³C NMR δ 175.23, 174.40, 55.69, 49.90, 41.62, 36.73, 36.59, 32.11, 31.94, 31.77, 30.32, 30.08, 29.73, 29.70, 29.68, 29.55, 29.39, 29.33, 29.29, 26.31, 25.80, 25.70, 22.87, 22.71, 14.14; HRMS (FAB, MH⁺) *m*/*z* calcd for C₂₇H₇₁N₂O₃ 567.5465, found 567.5455.

(*R*)-2,3-Dioctanamido-1-propanol (4c). The compound was prepared in 73% yield from diamidopropyl ether **3c** by the procedure described above: mp 102–103 °C; $[\alpha]^{25}_{D}$ +3.06° (*c* 5.0, CHCl₃); ¹H NMR δ 6.98 (bs, 1H, D₂O exchangeable), 6.76 (d, 1H, J = 6.7 Hz, D₂O exchangeable), 3.87 (bs, 1H), 3.69–3.65 (m, 1H), 3.58–3.47 (m, 2H), 3.30–3.24 (m, 1H), 3.14 (bs, 1H, D₂O exchangeable), 2.23 and 2.19 (t, 4H, J = 7.3 Hz), 1.63–1.77 (m, 4H), 1.25 (s, 16H), 0.88 (t, 6H, J = 5.9 Hz); ¹³C NMR δ 176.02, 174.28, 61.35, 51.56, 39.57, 36.61, 36.89, 31.68, 29.23, 29.19, 28.99, 25.75, 25.61, 14.07; HRMS (FAB, MH⁺) m/z calcd for C₁₉H₃₉N₂O₃ 343.2961, found 343.2961.

(S)-2,3-Dioctanamido-1-propanol (4c'). The compound was prepared in 70% yield from diamido ether **3c**' by the procedure described above: mp 101–102 °C; $[\alpha]^{25}_{D}$ –2.63° (*c* 5.0, CHCl₃).

(*R*)-1,2-Bis(stearoylamino)-1,2-deoxyphosphatidylcholine (1a). To a solution of diamidopropanol 4a (623 mg, 1.0 mmol) and *N*-ethyl-*N*,*N*-diisopropylamine (0.50 mL, 3.59 mmol) in 50 mL of CH_2Cl_2 was added ethylene chlorophosphite (0.6 mL, 3.44 mmol) at 0 °C. After the mixture was stirred for 24 h, bromine (6.72 mmol of a stock solution in CCl_4) was added at 0 °C. After 10 min, the solvent was removed under reduced pressure. The residue was dissolved in 39 mL of $CH_3CN/2$ -PrOH/CHCl₃ (5:5:3), and 21 mL of 45% aqueous trimethylamine was added at rt. After 24 h, the solvents were removed, the residue was dissolved in THF-H₂O 9:1, and the solution was

⁽¹¹⁾ Hassner, A.; Alexanian, V. Tetrahedron Lett. 1978, 4475-4478.

⁽¹²⁾ The solubility of the compounds in $CHCl_3$ was poor; therefore, the optical rotations could not be measured.

passed through a TMD-8 ion exchange column. The fractions containing the product were pooled and concentrated, giving crude diamidophospholipid **1a**. The product was purified by column chromatography on silica gel (elution with CHCl₃–CH₃-OH–H₂O 65:25:4). Removal of silica gel by filtration through a Metricel filter followed by lyophilization from C₆H₆ provided 575 mg (73%) of pure 1,2-diamido-1,2-deoxyphosphatidylcholine **1a** as a white solid; IR (KBr) 3436, 1637, 1243 cm⁻¹; $[\alpha]^{25}_D$ +1.06° (c 2.5, CHCl₃–MeOH 1:1); ¹H NMR (CDCl₃–CD₃OD) δ 7.34 (bs), 6.85 (d, J = 6.8 Hz), 4.15–3.25 (m, 9H), 3.24 (s, 9H), 2.28–2.15 (m, 4H), 1.63–1.77 (m, 4H), 1.25 (s, 56H), 0.88 (t, 6H, J = 5.9 Hz); ¹³C NMR δ 176.08, 175.35, 64.50, 58.17, 54.44, 50.38, 40.26, 36.70, 36.65, 32.16, 29.93, 29.80, 29.66, 29.59, 29.39, 29.33, 29.29, 25.91, 25.70, 22.90, 22.71, 14.19; HRMS (FAB, MH⁺) m/z calcd for C₄₄H₉₁N₃O₆P 788.6645, found 788.6696.

(*R*)-1,2-Bis(palmitoylamido)-1,2-deoxyphosphatidylcholine (1b). The compound was prepared in 65% yield from diamidopropanol 4b by the procedure described above: $[\alpha]^{25}_{\rm D}$ +2.14° (*c* 2.5, CHCl₃-MeOH 1:1); ¹H NMR δ 7.32 (bs), 6.84 (d, J = 6.8 Hz), 4.16-3.20 (m, 9H), 3.25 (s, 9H), 2.29-2.16 (m, 4H), 1.64-1.78 (m, 4H), 1.25 (s, 48H), 0.88 (t, 6H, J = 5.9 Hz); ¹³C NMR δ 175.49, 174.71, 64.00, 58.95, 53.91, 39.70, 36.14, 35.00, 31.57, 29.43, 29.21, 29.06, 29.00, 25.91, 25.51, 25.44, 22.32, 13.69; HRMS (FAB, MH⁺) m/z calcd for $C_{40}H_{83}N_3O_6P$ 732.6020, found 732.6016.

Acknowledgment. This work was supported by National Institutes of Health Grant No. HL-16660. We thank the mass spectrometry facility at Michigan State University for the HR-FAB MS. We gratefully acknowledge support from the National Science Foundation (CHE-9408535) for funds for the purchase of the 400-MHz NMR spectrometer.

Supporting Information Available: ¹H- and ¹³C-NMR spectra (18 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO961422N